Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Med Virol ; 95(1): e28383, 2023 01.
Article in English | MEDLINE | ID: covidwho-2148398

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Subject(s)
COVID-19 , Cyclic AMP Response Element-Binding Protein , Host-Pathogen Interactions , Humans , COVID-19/metabolism , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , CREB-Binding Protein/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology
2.
PLoS Negl Trop Dis ; 14(6): e0008407, 2020 06.
Article in English | MEDLINE | ID: covidwho-1962982

ABSTRACT

Confronted with the challenge of understanding population-level processes, disease ecologists and epidemiologists often simplify quantitative data into distinct physiological states (e.g. susceptible, exposed, infected, recovered). However, data defining these states often fall along a spectrum rather than into clear categories. Hence, the host-pathogen relationship is more accurately defined using quantitative data, often integrating multiple diagnostic measures, just as clinicians do to assess their patients. We use quantitative data on a major neglected tropical disease (Leptospira interrogans) in California sea lions (Zalophus californianus) to improve individual-level and population-level understanding of this Leptospira reservoir system. We create a "host-pathogen space" by mapping multiple biomarkers of infection (e.g. serum antibodies, pathogen DNA) and disease state (e.g. serum chemistry values) from 13 longitudinally sampled, severely ill individuals to characterize changes in these values through time. Data from these individuals describe a clear, unidirectional trajectory of disease and recovery within this host-pathogen space. Remarkably, this trajectory also captures the broad patterns in larger cross-sectional datasets of 1456 wild sea lions in all states of health but sampled only once. Our framework enables us to determine an individual's location in their time-course since initial infection, and to visualize the full range of clinical states and antibody responses induced by pathogen exposure. We identify predictive relationships between biomarkers and outcomes such as survival and pathogen shedding, and use these to impute values for missing data, thus increasing the size of the useable dataset. Mapping the host-pathogen space using quantitative biomarker data enables more nuanced understanding of an individual's time course of infection, duration of immunity, and probability of being infectious. Such maps also make efficient use of limited data for rare or poorly understood diseases, by providing a means to rapidly assess the range and extent of potential clinical and immunological profiles. These approaches yield benefits for clinicians needing to triage patients, prevent transmission, and assess immunity, and for disease ecologists or epidemiologists working to develop appropriate risk management strategies to reduce transmission risk on a population scale (e.g. model parameterization using more accurate estimates of duration of immunity and infectiousness) and to assess health impacts on a population scale.


Subject(s)
Biomarkers/blood , Host-Pathogen Interactions/physiology , Leptospira/pathogenicity , Leptospirosis/diagnosis , Leptospirosis/veterinary , Sea Lions/microbiology , Animal Diseases/diagnosis , Animal Diseases/immunology , Animal Diseases/microbiology , Animals , Antibodies, Bacterial/blood , Bacterial Shedding , California , Cross-Sectional Studies , Host-Pathogen Interactions/immunology , Immunity , Kinetics , Leptospira interrogans , Leptospirosis/immunology , Survival Rate
3.
Database (Oxford) ; 20222022 06 30.
Article in English | MEDLINE | ID: covidwho-1922225

ABSTRACT

During infection, the pathogen's entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host-pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein-protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available. Here, we introduce a high-throughput literature-mining platform for extracting HPI data that includes the most comprehensive to date collection of HPIs obtained from the PubMed abstracts. Our HPI data portal, PHILM2Web (Pathogen-Host Interactions by Literature Mining on the Web), integrates an automatically generated database of interactions extracted by PHILM, our high-precision HPI literature-mining algorithm. Currently, the database contains 23 581 generic HPIs between 157 host and 403 pathogen organisms from 11 609 abstracts. The interactions were obtained from processing 608 972 PubMed abstracts, each containing mentions of at least one host and one pathogen organisms. In response to the coronavirus disease 2019 (COVID-19) pandemic, we also utilized PHILM to process 25 796 PubMed abstracts obtained by the same query as the COVID-19 Open Research Dataset. This COVID-19 processing batch resulted in 257 HPIs between 19 host and 31 pathogen organisms from 167 abstracts. The access to the entire HPI dataset is available via a searchable PHILM2Web interface; scientists can also download the entire database in bulk for offline processing. Database URL: http://philm2web.live.


Subject(s)
COVID-19 , Databases, Factual , Host-Pathogen Interactions/physiology , Humans , Proteins/metabolism , PubMed
4.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714330

ABSTRACT

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Subject(s)
Antiviral Agents/pharmacology , Cannabidiol/pharmacology , Host-Pathogen Interactions/drug effects , Immunity, Innate/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19/virology , Cannabidiol/chemistry , Cannabidiol/metabolism , Chlorocebus aethiops , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/virology , Female , Gene Expression Regulation, Viral/drug effects , Host-Pathogen Interactions/physiology , Humans , Interferons/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
6.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: covidwho-1624813

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
7.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166322, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1637812

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI. We examined the effects of transfecting the viral spike protein of SARS-CoV-2 in kidney cell lines. METHODS: HEK293, HEK293-ACE2+ (stably overexpressing ACE2), and Vero E6 cells having endogenous ACE2 were transfected with SARS-CoV-2 spike or control plasmid. Assessment of gene and protein expression, and syncytia formation was performed, and the effects of quercetin on syncytia formation examined. FINDINGS: Spike transfection in HEK293-ACE2+ cells caused syncytia formation, cellular sloughing, and focal denudation of the cell monolayer; transfection in Vero E6 cells also caused syncytia formation. Spike expression upregulated potentially nephrotoxic genes (TNF-α, MCP-1, and ICAM1). Spike upregulated the cytoprotective gene HO-1 and relevant signaling pathways (p-Akt, p-STAT3, and p-p38). Quercetin, an HO-1 inducer, reduced syncytia formation and spike protein expression. INTERPRETATION: The major conclusions of the study are: 1) Spike protein expression in kidney cells provides a relevant model for the study of maladaptive and adaptive responses germane to AKI in COVID-19; 2) such spike protein expression upregulates HO-1; and 3) quercetin, an HO-1 inducer, may provide a clinically relevant/feasible protective strategy in AKI occurring in the setting of COVID-19. FUNDING: R01-DK119167 (KAN), R01-AI100911 (JPG), P30-DK079337; R01-DK059600 (AA).


Subject(s)
COVID-19/metabolism , Heme Oxygenase-1/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Protein Binding/drug effects , Protein Binding/physiology , Quercetin/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Up-Regulation/drug effects , Up-Regulation/physiology , Vero Cells , Virus Internalization/drug effects
8.
Nucleic Acids Res ; 50(D1): D1500-D1507, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1505820

ABSTRACT

The BioSamples database at EMBL-EBI is the central institutional repository for sample metadata storage and connection to EMBL-EBI archives and other resources. The technical improvements to our infrastructure described in our last update have enabled us to scale and accommodate an increasing number of communities, resulting in a higher number of submissions and more heterogeneous data. The BioSamples database now has a valuable set of features and processes to improve data quality in BioSamples, and in particular enriching metadata content and following FAIR principles. In this manuscript, we describe how BioSamples in 2021 handles requirements from our community of users through exemplar use cases: increased findability of samples and improved data management practices support the goals of the ReSOLUTE project, how the plant community benefits from being able to link genotypic to phenotypic information, and we highlight how cumulatively those improvements contribute to more complex multi-omics data integration supporting COVID-19 research. Finally, we present underlying technical features used as pillars throughout those use cases and how they are reused for expanded engagement with communities such as FAIRplus and the Global Alliance for Genomics and Health. Availability: The BioSamples database is freely available at http://www.ebi.ac.uk/biosamples. Content is distributed under the EMBL-EBI Terms of Use available at https://www.ebi.ac.uk/about/terms-of-use. The BioSamples code is available at https://github.com/EBIBioSamples/biosamples-v4 and distributed under the Apache 2.0 license.


Subject(s)
COVID-19/virology , Databases, Factual , Host-Pathogen Interactions/physiology , Plant Physiological Phenomena/genetics , COVID-19/genetics , Gene Expression Profiling , Genomics , Humans , Metadata , Phenotype , SARS-CoV-2/genetics
9.
Viruses ; 13(11)2021 10 28.
Article in English | MEDLINE | ID: covidwho-1487424

ABSTRACT

As the first intracellular host factors that directly interact with the genomes of RNA viruses, RNA binding proteins (RBPs) have a profound impact on the outcome of an infection. Recent discoveries brought about by new methodologies have led to an unprecedented ability to peer into the earliest events between viral RNA and the RBPs that act upon them. These discoveries have sparked a re-evaluation of current paradigms surrounding RBPs and post-transcriptional gene regulation. Here, we highlight questions that have bloomed from the implementation of these novel approaches. Canonical RBPs can impact the fates of both cellular and viral RNA during infection, sometimes in conflicting ways. Noncanonical RBPs, some of which were first characterized via interactions with viral RNA, may encompass physiological roles beyond viral pathogenesis. We discuss how these RBPs might discriminate between an RNA of either cellular or viral origin and thus exert either pro- or antiviral effects-which is a particular challenge as viruses contain mechanisms to mimic molecular features of cellular RNA.


Subject(s)
Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Proviruses/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Immunity, Innate , Proviruses/genetics , RNA Viruses , RNA, Messenger/metabolism , RNA, Viral , RNA-Binding Proteins/genetics , Viral Proteins/genetics
10.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1487420

ABSTRACT

Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.


Subject(s)
Host-Pathogen Interactions/physiology , Tetraspanins/physiology , Virus Diseases/metabolism , Gene Expression Regulation, Viral , HIV-1/pathogenicity , Humans , Influenza A virus/pathogenicity , Papillomaviridae/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology , Virus Internalization , Zika Virus/pathogenicity
11.
Life Sci ; 291: 120111, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1487890

ABSTRACT

The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.


Subject(s)
Antioxidant Response Elements/physiology , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Targeted Therapy/methods , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Host-Pathogen Interactions/physiology , Humans , Ozone/therapeutic use , Protein Interaction Maps/drug effects , Signal Transduction , COVID-19 Drug Treatment
12.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: covidwho-1472322

ABSTRACT

Oxygen-sensing mechanisms allow cells to adapt and respond to changes in cellular oxygen tension, including hypoxic conditions. Hypoxia-inducible factor (HIF) is a central mediator in this fundamental adaptive response, and has critical functions in normal and disease physiology. Viruses have been shown to manipulate HIFs during their life cycle to facilitate replication and invasion. Conversely, HIFs are also implicated in the development of the host immune system and response to viral infections. Here, we highlight the recent revelations of host-pathogen interactions that involve the hypoxic response pathway and the role of HIF in emerging viral infectious diseases, as well as discussing potential antiviral therapeutic strategies targeting the HIF signaling axis.


Subject(s)
Antiviral Agents/pharmacology , Host-Pathogen Interactions/physiology , Virus Diseases/metabolism , Virus Diseases/virology , Host-Pathogen Interactions/drug effects , Humans , Hypoxia , Hypoxia-Inducible Factor 1/metabolism , Virus Diseases/drug therapy , Virus Diseases/immunology
13.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: covidwho-1467276

ABSTRACT

The three classes of interferons (IFNs) share the ability to inhibit viral replication, activating cell transcriptional programs that regulate both innate and adaptive responses to viral and intracellular bacterial challenge. Due to their unique potency in regulating viral replication, and their association with numerous autoimmune diseases, the tightly orchestrated transcriptional regulation of IFNs has long been a subject of intense investigation. The protective role of early robust IFN responses in the context of infection with SARS-CoV-2 has further underscored the relevance of these pathways. In this viewpoint, rather than focusing on the downstream effects of IFN signaling (which have been extensively reviewed elsewhere), we will summarize the historical and current understanding of the stepwise assembly and function of factors that regulate IFNß enhancer activity (the "enhanceosome") and highlight opportunities for deeper understanding of the transcriptional control of the ifnb gene.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Host-Pathogen Interactions/physiology , Interferon-beta/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Enhancer Elements, Genetic , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H5N1 Subtype/pathogenicity , Interferon-beta/metabolism , Promoter Regions, Genetic , SARS-CoV-2/pathogenicity , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Biochem Biophys Res Commun ; 573: 158-163, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1446454

ABSTRACT

The angiotensin Converting Enzyme 2 (ACE2) receptor is a key component of the renin-angiotensin-aldesterone system (RAAS) that mediates numerous effects in the cardiovascular system. It is also the cellular point of contact for the coronavirus spike protein. Cleavage of the receptor is both important to its physiological function as well as being necessary for cell entry by the virus. Shedding of ACE2 by the metalloprotease ADAM17 releases a catalytically active soluble form of ACE2, but cleavage by the serine protease TMPRSS2 is necessary for virion internalization. Complicating the issue is the observation that circulating ACE2 can also bind to the virus effectively blocking attachment to the membrane-bound receptor. This work investigates the possibility that the inflammatory response to coronavirus infection can abrogate shedding by ADAM17, thereby favoring cleavage by TMPRSS2 and thus cell entry by the virion.


Subject(s)
ADAM17 Protein/chemistry , ADAM17 Protein/metabolism , Angiotensin-Converting Enzyme 2/metabolism , HSP20 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions/physiology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , HSP20 Heat-Shock Proteins/chemistry , Heat-Shock Response/physiology , Humans , Protein Domains , Protein Interaction Domains and Motifs , Serine Endopeptidases/metabolism , Virus Internalization
15.
Biochem Biophys Res Commun ; 579: 69-75, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1432975

ABSTRACT

N-glycosylation plays an important role in the pathogenesis of viral infections. However, the role of SARS-CoV-2 RBD N-glycosylation in viral entry remains elusive. In this study, we expressed and purified N331 and N343 N-glycosite mutants of SARS-CoV-2 RBD. We found that de-glycosylation at N331 and N343 drastically reduces the RBD binding to ACE2. More importantly, based on qualitative and quantitative virology research methods, we show that the mutation of RBD N-glycosites interfered with SARS-CoV-2 internalization rather than attachment potentially by decreasing RBD binding to the receptors. Also, the double N-glycosites mutant (N331 + N343) showed significantly increased sensitivity against the designated RBD neutralizing antibodies. Taken together, these results suggest that N-glycosylation of SARS-CoV-2 RBD is not only critical for viral internalization into respiratory epithelial cells but also shields the virus from neutralization. It may provide new insights into the biological process of early-stage SARS-CoV-2 infection with potential therapeutic implications.


Subject(s)
Polysaccharides/metabolism , Pulmonary Alveoli/cytology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing , Binding Sites , COVID-19/metabolism , COVID-19/virology , Cell Line , Epithelial Cells , Glycosylation , Host-Pathogen Interactions/physiology , Humans , Mutation , Polysaccharides/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Attachment
16.
Life Sci Alliance ; 4(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1389961

ABSTRACT

Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction. Some of the catalysing enzymes of such reactions have demonstrated interactions with existing drugs, which can be used for experimental testing of the presented predictions using gene knockouts and RNA interference techniques. In summary, the developed computational approach offers a platform for rapid, experimentally testable generation of drug predictions against existing and emerging viruses based on their biomass requirements.


Subject(s)
Host-Pathogen Interactions , Lung , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Biomass , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Culture Media/chemistry , Culture Media/metabolism , Glycolysis/physiology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Lung/cytology , Lung/metabolism , Metabolic Flux Analysis , Models, Biological , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Systems Biology , Virus Replication/drug effects , Virus Replication/physiology
17.
Int J Med Sci ; 18(10): 2102-2108, 2021.
Article in English | MEDLINE | ID: covidwho-1389721

ABSTRACT

Introduction: SARS-CoV-2 is a respiratory virus supposed to enter the organism through aerosol or fomite transmission to the nose, eyes and oropharynx. It is responsible for various clinical symptoms, including hyposmia and other neurological ones. Current literature suggests the olfactory mucosa as a port of entry to the CNS, but how the virus reaches the olfactory groove is still unknown. Because the first neurological symptoms of invasion (hyposmia) do not correspond to first signs of infection, the hypothesis of direct contact through airborne droplets during primary infection and therefore during inspiration is not plausible. The aim of this study is to evaluate if a secondary spread to the olfactory groove in a retrograde manner during expiration could be more probable. Methods: Four three-dimensional virtual models were obtained from actual CT scans and used to simulate expiratory droplets. The volume mesh consists of 25 million of cells, the simulated condition is a steady expiration, driving a flow rate of 270 ml/s, for a duration of 0.6 seconds. The droplet diameter is of 5 µm. Results: The analysis of the simulations shows the virus to have a high probability to be deployed in the rhinopharynx, on the tail of medium and upper turbinates. The possibility for droplets to access the olfactory mucosa during the expiratory phase is lower than other nasal areas, but consistent. Discussion: The data obtained from these simulations demonstrates the virus can be deployed in the olfactory groove during expiration. Even if the total amount in a single act is scarce, it must be considered it is repeated tens of thousands of times a day, and the source of contamination continuously acts on a timescale of several days. The present results also imply CNS penetration of SARS-CoV-2 through olfactory mucosa might be considered a complication and, consequently, prevention strategies should be considered in diseased patients.


Subject(s)
Olfactory Mucosa/virology , SARS-CoV-2/pathogenicity , Biomechanical Phenomena , Computer Simulation , Host-Pathogen Interactions/physiology , Humans , Hydrodynamics , Olfactory Mucosa/diagnostic imaging
18.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1387679

ABSTRACT

Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity, Innate/physiology , Nasopharynx/virology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Case-Control Studies , Chemokine CXCL10/metabolism , Disease Susceptibility/immunology , Female , Gene Expression Profiling , Host-Pathogen Interactions/physiology , Humans , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Male , Middle Aged , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Load , Virus Replication
19.
Commun Biol ; 4(1): 715, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1387495

ABSTRACT

While SARS-CoV-2 is causing modern human history's most serious health crisis and upending our way of life, clinical and basic research on the virus is advancing rapidly, leading to fascinating discoveries. Two studies have revealed how the viral virulence factor, nonstructural protein 1 (Nsp1), binds human ribosomes to inhibit host cell translation. Here, we examine the main conclusions on the molecular activity of Nsp1 and its role in suppressing innate immune responses. We discuss different scenarios potentially explaining how the viral RNA can bypass its own translation blockage and speculate on the suitability of Nsp1 as a therapeutic target.


Subject(s)
Host-Pathogen Interactions/physiology , Ribosomes/virology , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/metabolism , 5' Untranslated Regions , Gene Expression Regulation, Viral , Humans , Immunity, Innate , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
20.
J Neurovirol ; 27(4): 531-541, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1384682

ABSTRACT

The conjugation of small ubiquitin-like modifier (SUMO) proteins to substrates is a well-described post-translational modification that regulates protein activity, subcellular localization, and protein-protein interactions for a variety of downstream cellular activities. Several studies describe SUMOylation as an essential post-translational modification for successful viral infection across a broad range of viruses, including RNA and DNA viruses, both enveloped and un-enveloped. These viruses include but are not limited to herpes viruses, human immunodeficiency virus-1, and coronaviruses. In addition to the SUMOylation of viral proteins during infection, evidence shows that viruses manipulate the SUMO pathway for host protein SUMOylation. SUMOylation of host and viral proteins greatly impacts host innate immunity through viral manipulation of the host SUMOylation machinery to promote viral replication and pathogenesis. Other post-translational modifications like phosphorylation can also modulate SUMO function. For example, phosphorylation of COUP-TF interacting protein 2 (CTIP2) leads to its SUMOylation and subsequent proteasomal degradation. The SUMOylation of CTIP2 and subsequent degradation prevents CTIP2-mediated recruitment of a multi-enzymatic complex to the HIV-1 promoter that usually prevents the transcription of integrated viral DNA. Thus, the "SUMO switch" could have implications for CTIP2-mediated transcriptional repression of HIV-1 in latency and viral persistence. In this review, we describe the consequences of SUMO in innate immunity and then focus on the various ways that viral pathogens have evolved to hijack the conserved SUMO machinery. Increased understanding of the many roles of SUMOylation in viral infections can lead to novel insight into the regulation of viral pathogenesis with the potential to uncover new targets for antiviral therapies.


Subject(s)
Host-Pathogen Interactions/physiology , Immunity, Innate/physiology , Sumoylation/physiology , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Humans , Protein Processing, Post-Translational , SUMO-1 Protein/immunology , SUMO-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL